Positive semidefinite

A square, symmetric matrix Hd×dH ∈ \mathbb{R}^{d×d} is positive semidefinite (PSD) for any vector ydy ∈ \mathbb{R}^d, 𝐲𝐇𝐲0\mathbf{y}^\intercal \mathbf{Hy} ≥ 0.

Notation

Use “Loewner order” \succeq to denote 𝐇\mathbf{H} is PSD, i.e. 𝐇0\mathbf{H} \succeq 0 Write 𝐁𝐀\mathbf{B} \succeq \mathbf{A} or equivalently 𝐀𝐁\mathbf{A} \preceq \mathbf{B} to denote that (𝐁𝐀)(\mathbf{B}-\mathbf{A}) is PSD; this gives a partial ordering on matrices.


Convexity and PSD

If ff is twice differentiable, then it is convex if and only if the matrix 2f(𝐱)∇^2 f(\mathbf{x}) (Hessian matrix) is positive semidefinite for all 𝐱\mathbf{x}.